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Transfer operator approach on three-dimensional quantum billiards with SO„2… symmetry
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~Received 15 August 2002; revised manuscript received 6 January 2003; published 7 April 2003!

This work demonstrates the application of Bogomolny’s transfer operator method on three-dimensional
dynamics. Motivated by experimental observations of lenslike metal clusters, the quantum billiards bounded by
a flat bottom and an upper surface with SO(2) symmetry are studied. A precise determination of the energies
with error less than 0.05% and exact predicted degeneracies in the special case of the half-sphere billiard
confirm the efficiency of this method. Furthermore, the spectra and degeneracies of lens billiards with varying
heights are explicitly determined.
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I. INTRODUCTION

Bogomolny’s transfer operator method is a well-know
quantization method in the study of quantum chaos@1#,
along with other methods such as Gutzwiller’s trace form
and dynamicalz function, which relate the energy spectru
of a quantum system to its classical dynamical system@2#.
This method is not only conceptually appealing, because
its connection between the quantum and classical worlds
also practically important, because it provides an effici
method of quantization. The basic idea of this method is
convert the eigenvalue problem of a Hamiltonian in
k-dimensional real space to the eigenvalue problem of a
responding transfer operator on a (k21)-dimensional Poin-
caré section, in the spirit of the boundary integral meth
@1#, from which the transfer operator method was deriv
This conversion considerably reduces the dimension in
merical work and hence the computational effort, especi
for asymmetric systems, in which the Hamiltonian cannot
factorized. Moreover, the transfer operator is relatively e
to construct, since for proper Poincare´ sections, it is defined
only on a finite number of classical trajectory segments
contrast to most semiclassical methods based on infin
many periodic orbits, which are difficult to determine sy
tematically, e.g., due to the exponentially proliferating nu
ber of orbits with their length in ergodic systems@2,3#. Such
a complex application procedure can be seen in the exam
of applying the trace formula to the three-dimensional~3D!
Sinai billiard @4#.

Despite these two advantages, the transfer oper
method is correct only up to\2 in the stationary phase ap
proximation. It is exact only in the semiclassical limit\
→0 and a general error estimation for finite\.0 is absent.
This fact raises the question of how reliable this method is
practice. This question has been clarified for various syste
to which the transfer operator has recently been applied
cluding billiards with hard boundaries such as rectangu
billiards @5#, Limaçon billiards @6#, circle billiards@7,8#, an-
nulus billiards@9,8#, triangular billiards@10#, wedge billiards
@7,11# and systems under potentials such as the Coulo
potential@8#, harmonic oscillators@8,12#, the Nelson poten-
tial @13#, and geodesic flow on Riemann surfaces of cons
negative curvature@14#. However, the transfer operator in a
of these studies were constructed on two-dimensional~2D!
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dynamics~to the best of the author’s knowledge!. The only
one 3D system studied has SO(3) symmetry and was
duced to a 2D problem in the investigation@8#.

The current work demonstrates the application of
transfer operator method on 3D trajectories. The geometr
motivated by recent experimental observations of vario
metal clusters shaped like lenses@15#. A peculiar phenomena
exhibited in several of these clusters is the magic size of
clusters, due to particularly stable numbers of atoms in
clusters. This result is attributed to a combination of differe
effects, among which the quantum size effect plays an es
tial role. The simplest model for this effect in these cluste
is that of a single particle confined within a 3D quantu
billiard bounded by a flat bottom and an upper surface w
SO(2) symmetry~see an example in Fig. 1!. The application
of the transfer operator method will be presented on th
geometries.

The SO(2) symmetry enables the reduction of the Ham
tonian from a 3D problem to a 2D problem. This reducti
provides analytical solutions in the special case of the h
sphere quantum billiard. The validity of applying the trans
operator method in this special case is confirmed by pre
energy determination~decreasing error at least less th
0.05% by increasing the dimension of the discretized tran

FIG. 1. A lens quantum billiard is a particle confined by a c
plane and the upper part of a half-sphere above this cut plane.
particle inside is reflected elastically by the hard boundary.
©2003 The American Physical Society01-1
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operator! and correct prediction of degeneracies. Furth
more, the energy spectra and the degeneracies of lens q
tum billiards with different heights are determined.

II. THE TRANSFER OPERATOR METHOD

Consider a particle with energyE, moving in a
k-dimensional real space. Select a (k21)-dimensional Poin-
carésection~PS! S in this space, such that almost all cla
sical trajectories pass this section. Figure 2 shows the
ample of a 2D billiard (k52) with the boundaryX ~solid
curve! and a PSS ~dashed curve! with a distance« far from
X. Beginning with an initial positionq8 on S pointing to-
wards the inner side ofS, the next crossing point is the nex
point at which the trajectory crossesS and points towards
the same side ofS as it did atq8. Accordingly, the next
crossing point afterq8 in Fig. 1 isq, not q1 .

The transfer operatorT(E) is defined as the integral op
erator@1#,

T~E!c~q!5E
S
T~q,q8,E!c~q8!dq8,

acting on some functionc(q8) on S. The integral kernel

T~q,q8,E!5 (
class. traj.

1

~2p i\!(k21)/2

3AUdet
]2S~q,q8,E!

]q]q8
U

3exp@ iS~q,q8,E!/\2 inp/2# ~1!

is defined as the sum over all possible classical trajecto
from the initial pointq8PS to the final pointqPS in the
real space at energyE without any crossing points in be
tween. The functionS(q,q8,E) in Eq. ~1! is the action along
the trajectory fromq8 to q and the Maslov indexn is related
to the number of the points, at which the semiclassical
proximation is not valid@1#. In billiard systems with a hard
boundary, this index is double the number of reflection poi
of the trajectory betweenq8 and q at the boundary. In the
following, the distance« is assumed to be infinitely close t
zero, such that the pointsq8, qPS can be regarded as on th
billiard boundary, when the length of the trajectory segm

FIG. 2. Poincare´ sectionS and crossing pointsq8 andq in the
transfer operator method.
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betweenq8 andq is calculated. But one should keep in min
that «Þ0 when counting the reflection points at the boun
ary betweenq8 andq. According to Bogomolny’s theory@1#,
in the semiclassical limit\→0, the zeros of the Fredholm
determinant,

det@12T~E!#50,

of the transfer operatorT(E) are the energies of the corre
sponding quantum system.

III. THREE-DIMENSIONAL QUANTUM BILLIARDS
WITH SO „2… SYMMETRY ON A PLATE

One of the frequently observed shapes of the 3D m
clusters can be described by the quantum billiard, boun
by a flat circular bottomB on the xy plane and an uppe
surfaceF with SO(2) rotational symmetry. A pointq(x,y,z)
on F can be represented in the polar coordinateq(r ,u) on B,
with

x5r cos~u!, y5r sin~u!, and z5h~r !,

wherer refers to the distance from the origin to the point
B projected down fromqPF, u represents the angular var
able of this projected point, andh(r ) stands for the height o
q at radiusr ~Fig. 3!. Alternatively, the pointq can be repre-
sented in the coordinateq(qr ,qu) on the surfaceF, charac-
terized by the path lengthqr on F from the center ofF to q
and the path lengthqu on F in the rotational direction~Fig.
3!. Variables on these two coordinate systems are related

qr5E
0

rA11S ]

]r 8
h~r 8!D 2

d r8,

qu5ru. ~2!

Select a PSS inside the billiard and infinitesimally close
to F. Given an initial pointq8 and a final pointq on S, there
exist only two trajectories fromq8 to q without other cross-

FIG. 3. Representation ofq in the coordinate system (r ,u) on B
and the coordinate system (qr ,qu) on F.
1-2
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ing points in between. Figure 4 shows an example in wh
F is a half sphere. The first trajectoryg2 is reflected by the
upper boundaryF once, shortly before it reachesq. The sec-
ond trajectoryg1 is reflected once atqm by the bottomB and
once byF, shortly before arriving atq. The trajectory seg-
mentqqmøqmq8 of g1 is of the same length as the segme
q9qmøqmq8 from q8 to the imageq9 of q reflected by the
mirror B.

All points q, q8, q9, qm , and trajectoriesg7 are on the
same plane~the gray plane in Fig. 4!. Thus, the length ofg7

from q8(r 8,u8)5q8(x8,y8,z8) to q(r ,u)5q(x,y,z) can be
easily calculated:

l 7~q,q8,E!5A~x2x8!21~y2y8!21~z7z8!2

5Aj17j2,

with

j15r 222 r r 8 cos~u82u!1r 821h~r !21h~r 8!2

j252h~r !h~r 8!.

Changing variables in the action

S7~q,q8,E!5A2mEl7~q,q8,E!

from (r ,u) to (qr ,qu) by relations ~2! and deviatingS
5S„q(qr ,qu),q8(qr8 ,qu8),E… by qr andqu , respectively,qr8
andqu8 yields

FIG. 4. Two trajectoriesg7 from the initial pointq8 to the final
point q on a PSS in the half-sphere billiard system.
04620
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det
]2S

]q]q8
5detS ]2S

]qr]qr8

]2S

]qr]qu8

]2S

]qu]qr8

]2S

]qu]qu8

D
5

]2S

]qr]qr8

]2S

]qu]qu8
2

]2S

]qr]qu8

]2S

]qu]qr8
.

In concave billiards, or billiards wherein the angle betweenF
and B inside the billiard exceedsp/2, the so-called ghos
trajectories must be taken into account. Please refer to@1# for
further detail. The Maslov indexn2 for g2 is 2 andn1 for
g1 is 4, since the trajectoriesg7 from q8 to q are reflected
once by boundaryF and twice byFøB, respectively. Con-
sequently, kernelT(q,q8,E) of T(E) in Eq. ~1! is explicitly
determined by considering all quantities discussed abo
where the sum in Eq.~1! includes only two trajectoriesg7 .

Next the sectionS is discretized intoN cells, in which the
nth cell has the areann . Under the basis$cn% with

cn~q!5H 1

Ann

for qPnth cell

0 otherwise,

the transfer operatorT is discretized into anN-dimensional
matrix with entries

Tab5
nb

2p i\ (
g7

AUdetS ]2S~qa ,qb8 ,E!

]qa]qb8
D U

3exp@ iS~qa ,qb8 ,E!/\2 inp/2#, ~3!

whereqa is the center point of theath cell.
For the systems with SO(2) symmetry considered he

the basis$cn% can be explicitly selected as follows. First, th
surfaceF is divided intonr stripesF ( i ), i 51, . . . ,nr . The
i th stripeF ( i ) is bounded by two cylinders centered at thez
axis with radiir i 21 andr i , wherer 050 andr i 21,r i . Fig-
ure 5 shows the example of a half sphere divided intonr
53 stripes, which are bounded by the cylinders with ra
r 0 , r 1 , r 2 , andr 3 (r 050). Radii r i ’s are selected such tha
the widths

L~r i 21 ,r i !:5E
r i 21

r i A11S ]

]r 8
h~r 8!D 2

d r8 ~4!

of all stripesF ( i ) along theqr direction are equal. The area o
the i th stripeF ( i ) constructed in this way is then

A( i )52p E
r i 21

r i
r 8A11S ]

]r 8
h~r 8!D 2

d r8.

Next, the first stripeF (1) ~in fact a hat! is divided into four
cells F (1,j ), j 51, . . . ,4, of equal arean5A(1)/4. The i th
1-3
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stripe F ( i ) is divided into nu,i cells such that the cell are
A( i )/nu,i is the closest value ton. Accordingly, the whole
surfaceF is a union of all cellsF ( i , j ),

F5ø i 51
nr ø j 51

nu,i F ( i , j ).

These cellsF ( i , j ) are ordered from the first to thenr th stripe
counterclockwise, as shown in Fig. 5, where the first, seco
and third stripe consist ofnu,154, nu,2511, andnu,3515
cells, respectively. The total numberN5( i 51

nr nu,i of the
cells, uniquely determined bynr , is the dimension of the
basis$cn% and of the discretized matrixTab , which equals
30 in the example in Fig. 5. The region of thekth cell, k
5 j 1(a51

i 21 nu,a , in the i th stripe and thej th position, is rep-
resented by the half-open set

r P@r i 21 ,r i ! and uPF ~ j 21!
2p

nu,i
, j

2p

nu,i
D

in the polar coordinate system (r ,u), with the areank
5F ( i )/nu,i and its center point is located at

qS r̄ , ~ j 2 1
2 !

2p

nu,i
D ,

where the center positionr̄ P@r i 21 , r i) of the i th stripe inqr

direction satisfiesL(r i 21 , r̄ )5L( r̄ ,r i). In fact, the center
point r̄ can be replaced by an arbitrary pointr̄ 8P@r i 21 ,r i) in
the numerical approximation, because the discretized ma
Tab under different choice ofr̄ 8 approaches the same oper
tor T by increasing cell numberN.

FIG. 5. Discretization of a half-sphere billiard with the heig
functionh(r )5A12r 2, the stripe numbernr53, and the cell num-
ber N530. The first stripeF (1) ~in fact a hat! consists of four
cells—1, 2, 3, and 4. The second stripeF (2) consists of 11 cells—
from 5 to 15. The third stripeF (3) consists of 15 cells—from 16 to
30.
04620
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The construction discussed so far is general and valid
all billiards bounded by a flat bottom and an upper surfa
with SO(2) symmetry. The following applies this constru
tion to the special case of lens quantum billiards, in wh
the upper boundF is part of a sphere.

IV. LENS QUANTUM BILLIARD

Consider a 3D billiard with SO(2) symmetry describe
by the height function

h~r !5A11H22r 22H, ~5!

parametrized by a widthH indicated in Fig. 6. The radius o
the circular bottomB of this billiard specified by Eq.~5!
remains 1 asH varies. ForH50, which impliesR51, the
shape described by Eq.~5! is a half sphere. Figure 7 plots th
absolute value of the Fredholm determinantudet@12T(E)#u
with a matrix dimensionN5395, obtained by settingm51
and\51 in Eq. ~3!.

The nth zeroEn of the function det@12T(E)#, with En
,En11 , is thenth approximated energy of the half-sphe

FIG. 6. Profile of lens quantum billiards bounded by a botto
~solid line! and an upper surface~solid arc! with width H.

FIG. 7. Absolute value of the Fredholm determinant,udet@1
2T(E)#u, of the transfer operatorT(E) vs energyE for the half-
sphere billiard, where the functionudet@12T(E)#u is dimensionless
and the energyE has the unit\2/(mR2) in Eq. ~6!.
1-4
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quantum billiard, presented in the second column of Tabl
The third column lists the exact energies

En* 5
1

2

\2xn
2

m R2
~6!

of the half-sphere quantum billiard~with R51, m51, and
\51). Therein,xn5x(n8,l ), stated in the fourth column
represents then8th zero of the spherical Bessel function
the first kind,j l(x), of thel th order. The ordering is such tha
xn,xn11 for all possible values ofn8 and l ~see Appendix!.
The fifth column presents the degeneraciesdn* 5 l of En* .
The sixth column shows the error ratesdn5(En2En* )/En*
induced by the semiclassical approximation. These errors
bounded by 0.05% from above forN51715 and decrease a
N increases. Figure 8 magnifies the functionudet@1
2T(E)#u in Fig. 7 in the neighborhood of zerosEn for n
51, . . . ,6 ~solid curves!. The function behaves asymptot
cally like

udet@12T~E!#u;u~E2En!dnu for E→En ,

where the exponentdn corresponds to the degeneracy of t
eigenvalue 1 of the transfer operatorT(En), which agrees
with the degeneracydn* of the exact quantum energyEn* in
Table I. The asymptotic polynomialsu(E2En)dnu are plotted
as dashed curves in Fig. 8.

The consistency of energiesEn andEn* and that of degen-
eraciesdn and dn* in the energy regime studied justify th
successful application of the transfer operator to these

TABLE I. Ordered semiclassical energiesEn , exact energies
En* , the zerosxn of the Bessel functions, exponentsdn of det@1
2T(E)# near the zerosEn , degeneraciesdn* of En* , and the semi-
classical error ratedn of the half-sphere quantum billiard, calculate
for dimensionN51715.

n En En* xn dn5dn* dn (%)

1 10.099 10.095 4.493 1 0.05
2 16.614 16.609 5.763 2 0.03
3 24.424 24.416 6.988 3 0.03
4 29.848 29.838 7.725 1 0.03
5 33.489 33.481 8.183 4 0.02
6 41.372 41.360 9.095 2 0.03
7 43.781 43.768 9.356 5 0.03
8 54.275 54.255 10.417 3 0.04
9 55.280 55.260 10.513 6 0.04
10 59.467 59.450 10.904 1 0.03
11 67.969 67.945 11.657 7 0.04
12 68.524 68.505 11.705 4 0.03
13 75.950 75.930 12.323 2 0.03
14 81.834 81.805 12.791 8 0.04
15 84.093 84.070 12.967 5 0.03
16 93.846 93.820 13.698 3 0.03
17 96.863 96.830 13.916 9 0.03
18 98.958 98.925 14.066 1 0.03
19 100.958 100.919 14.207 6 0.04
04620
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systems. Notably, the high dimension,N51715, in the cal-
culation, is used to pursue the upper bound of the semic
sical error as precisely as possible and is not necessar
practical use. In fact, Bogomolny estimated the dimens
required to yield a good approximation:

N>V~E!/~2p\!k21,

whereV denotes the volume of the allowed phase space
gion of the (k21)-dimensional sectionS @1#. Accordingly,
the required dimensions in the half-sphere billiard areN
520 for E1510.099 andN5201 for E195100.958, which
are much smaller thanN51715.

Figure 9 displays the energy spectra of general lens
liards described by Eq.~5!, with variousH. The energy spec-
trum is split into finer spectra due to symmetry breaki
induced by the transition from the half-sphere billiard wi

FIG. 8. Asymptotic behavior ofudet@12T(E)#u near zero points
En ~solid curves! and asymptotic polynomialsu(E2En)dnu ~dashed
curves!. Units are the same as those in Fig. 7.

FIG. 9. Energy spectra of lens quantum billiards vs differentH
in Eq. ~5!, with the unit\2/(2mR2), like that in Eq.~6!, for En and
the unitR for H.
1-5
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H50 to lens billiards withH.0. The sums of the split de
generacies forH.0 coincide with the nonsplit degenerac
for H50. For example, the degeneracies of the first ten
ergies forH50.75 are 1, 2, 2, 1, 2, 2, 2, 2, 1, and 1. The su
of the degeneracies of the third and fourth energies foH
50.75 is 3, which equals the nonsplit degeneracy 3 of
third energy forH50. It is consistent with the plot in Fig. 9
which shows thatE3 andE4 for H50.75 are split fromE3
for H50.

V. CONCLUSION

In summary, this work demonstrates how to apply t
transfer operator method on the systems with a 2D Poin´
section and 3D trajectories. The geometry studied is the
quantum billiards bounded by a flat bottom and an up
surface with SO(2) symmetry, which is motivated by rece
observations of the lens-shaped metal clusters. A gen
strategy for obtaining the energy spectrum of these billia
using classical trajectories, without solving the Schro¨dinger
equation, is presented. The spectra and the correspon
degeneracies of the lens quantum billiards with a vary
billiard height, or widthH, in the low energy regime are
calculated. In the special case of the half-sphere billiard,
zerosEn of the function det@12T(E)#, determined by the
transfer operator method, coincide with the exact quan
energiesEn* with an error at least less than 0.05%. Furth
more, the degeneracies of the eigenvalue 1 ofT(En) coincide
with the degeneracies of the exact energiesEn* . All these
results confirm the validity and demonstrate the efficiency
applying the transfer operator method to these 3D syste
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APPENDIX

The exact energy eigenvalues of a particle with massm
bounded inside the sphere of radiusR have the same form a
that for the half sphere in Eq.~6!,

En
sphere5

1

2

\2xn
2

m R2
.

Supposex(n8,l ) is the n8th zero of the spherical Besse
function j l(x) of the l th order, which is listed in Table II
thenxn is thenth smallest value among these zerosx(n8,l ).

The energy eigenfunction of the sphere is the produc
the radical function and the spherical surface functionYlm ,
e.g.,
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Y00~u,f!5
1

2
A1

p
,

Y10~u,f!5
A3

2
A1

p
cos~u!,

Y161~u,f!57
A6

4
A1

p
sin~u!e6 i f,

Y20~u,f!5
A5

4
A1

p
@3 cos~u!221#,

Y261~u,f!57
A30

4
A1

p
sin~u!cos~u!e6 i f,

Y262~u,f!5
A30

4
A1

p
sin~u!2e62 i f,

Y30~u,f!5
A7

4
A1

p
cos~u!@5 cos~u!223#,

Y361~u,f!57
A21

8
A1

p
sin~u!@25 cos~u!211#ei f,

Y362~u,f!57
A210

8
A1

p
sin~u!2cos~u!e62 i f,

Y363~u,f!57
A35

8
A1

p
sin~u!3e63 i f,

Y40~u,f!5
3

16
A1

p
@35 cos~u!4230 cos~u!213#,

Y461~u,f!57
A5

8
A1

p
sin~u!e6 i f,

3$12 cos~u!329@12cos~u!2#cos~u!%,

TABLE II. Zeros x(n8,l ) of the spherical Bessel function.

l\n8 1 2 3 4 5

0 p 2p 3p 4p 5p
1 4.493 7.725 10.904 14.066 17.221
2 5.761 9.095 12.323 15.515 18.689
3 6.988 10.417 13.698 16.924 20.122
4 8.183 11.705 15.040 18.301 21.525
5 9.356 12.967 16.355 19.653 22.904
6 10.513 14.207 17.648 20.983 24.263
7 11.657 15.431 18.923 22.295 25.603
8 12.791 16.641 20.182 23.591 26.927
9 13.916 17.839 21.428 24.873 28.237
10 15.033 19.026 22.663 26.143 29.535
1-6
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Y462~u,f!57
A10

16
A1

p
sin~u!2@21 cos~u!223#e62 i f,

Y463~u,f!57
3A35

8
A1

p
sin~u!3cos~u!e63 i f,

Y464~u,f!5
3A70

32
A1

p
sin~u!4e4 i f.

The energy for the sphere has degeneracy 2l 11, because of
the relation2 l<m< l with l>0. However, only the odd
functionsYlm in u listed above, which disappear on the equ
tor planeu5p/2, contribute to the wave functions for th
cs

04620
-

half sphere, e.g.,Y10, Y20, Y262 , Y30, Y362 , etc.; that is,
the energy form for the sphere and for the half sphere are
same, as in Eq.~6!. Nevertheless, due to the symmetry brea
ing from SO(3) for the sphere to SO(2) for the half sphe
the degeneracies of the energies are reduced from 2l 11 to l.
The counting of thenth smallest energy begins withl>0 for
the sphere and withl>1 for the half sphere, because th
only one functionY00(u,f) for l 50 is not an eigenfunction
for the half sphere, since it does not satisfyY00(p/2,f)50.
Therefore, thenth energyEn* in Table I comes from thenth
smallest value among allx(n8,l ) with l>1 in Table II. The
(n8,l ) values of the first seven smallest energiesEn* are
(1,1), (1,2), (1,3), (2,1), (1,4), (2,2), (1,5) with the corr
sponding degeneraciesl 51, 2, 3, 1, 4, 2, and 5.
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